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Abstract. We introduce a new force-directed model for computing graph layout.
The model bridges the two more popular force directed approachesstridss
and the electrical-spring models — through biveary stress cost function, which
is a carefully defined energy function with low descriptive complexity all@wvin
fast computation via a Barnes-Hut scheme. This allows us to overcptimeiza-
tion pitfalls from which previous methods suffer. In addition, the binargsstr
model often offers a unique viewpoint to the graph, which can occakyoadd
useful insight to its topology. The model uniformly spreads the nodesnathir-
cle. This helps in achieving an efficient utilization of the drawing area. b\@e
the ability to uniformly spread nodes regardless of topology, beconisipa
larly helpful for graphs with low connectivity, or even with multiple connelcte
components, where there is not enough structure for defining alrieddgout.

1 Introduction

A popular approach to drawing graphs is based on measuringudlity of the layout
through a formal cost function. The layout of the graph isrfed by an optimization
algorithm that finds a local minimum of the cost function. §family of algorithms is
known in the graph drawing literature as force-directedathms; see, e.g., [2, 14].

Broadly speaking, force-directed cost functions (alsovkmasenergies) define a
desired layout based on either the electric-spring metaphan a stress function. Elec-
tric spring functions liken the graph to a physical systenerghnodes correspond to
electrically charged particles, and edges correspond riaggpowith zero rest length.
Repulsive electric forces ensure that nodes are well segphrahile attractive spring
forces tend to shorten edges and pack closely connectedocamts. Two well known
early versions of this scheme are by Eades [4] and by Fruohteand Reingold [6].

The stress function relates a nice drawing to good isoméfeyhave an ideal target
distanced;; for every pair of nodesand;j. Given a 2-D layout, where nodés placed
at pointp;, the stress function is:

Zwij ([lpi = pjll = d’ij)2 1)

i<j
We desire a layout that minimizes this function, therebyt beslizing the target dis-
tances. Here, the distandg is typically the graph-theoretical distance between nodes
¢ andj. The normalization constant;; equalsd;ja. The function (1) appeared earlier
as the stress function in multidimensional scaling [3], vehi was applied to graph
drawing [16]. It became a popular graph drawing tool by Kaanadd Kawai [13].

Both electric-spring and stress approaches enjoy suctasgflementations and
offer pleasing layouts to many graphs. In terms of layoueapance, there are distinct
differences between the models, though they are hard toed&mfor computational
aspects, the two approaches induce different optimizgiiogesses, and each has a
unique advantage. Electric-spring models have the adgarté a lower descriptive



complexity compared to the stress model. This is becausepllsive forces are uni-

form, whereas attractive forces involve only tj€| pairs of adjacent nodes. On the
other hand, the stress function requires encoding a diffe¢erget distance for each
node pair. This fundamental difference bounds stress rmadejuadratic space com-
plexity, while efficient implementations of electric-spgimodels scale to larger graphs.

On the other hand, the stress function has a mild landscdpehwllows utilizing
powerful optimization techniques such as majorization THis way, good minima are
usually achieved regardless of the initial positions. Thisntrue for the electric-spring
models, which induce an intricate landscape as repulsiee$omake the energy go to
infinity when nodes overlap. This causes serious conveggprablems even for mod-
erately sized graphs. Past works [9, 11, 19] used sophistidaitialization techniques
through multilevel approximation to overcome these protse

In this work we introduce the binary-stress mode®fess) for drawing graphs.
Computationally, it is able to merge the advantages of bo¢helectric-spring model
and the stress model. Namely, it offers a low descriptivemerity, thus being scalable
to very large graphs. At the same time, it is similar in itsnfoto the known stress
function, thus enabling the use of the majorization optatian scheme.

As for the quality of the layout, bStress frequently offeraraque perspective to
the graph structure. More than other models, bStress ernzpksamiform spread of the
nodes within a circular drawing area. This may lead to disitle layouts, which can
serve as useful addition to those produced by other algosittMoreover, the empha-
sis on uniform spread is advantageous for graphs with lomeativity, whose struc-
ture alone is not capable of defining a good layout. For exaniy$tress will naturally
handle graphs with multiple connected components by pgckiinconnected compo-
nents together without requiring any post-processing ecisp treatment that alterna-
tive methods require. In addition, bStress is suitable fanihg large graphs, not only
because of its improved scalability, but also because iiesel good area utilization
that is important for placing a large number of nodes.

2 Basic notions

We are seeking a layout for a graptfV = {1, ...,n}, E), where the position of node
iisp; = (zi,y;). Sometimes, we will refer to the vectarsy € R”", which represent
all z- or y-coordinates, respectively. Notice that while this worklses the more
common case of 2-D layouts, as usual with force-directedralgns, extensions to
3-D are naturally possible.

3 TheBinary StressModel

One of the earliest cost functions involved in defining a d&@ut strives to shorten
the squared edge lengths:

Hp)= Y lpi—pil? 2)

i,j)EE
However, minimizingH (p) on its owr<1 ’i75>€not sufficient for defining a useful layout, as
nothing prevents all nodes from collapsing at a single pdihtis, Tutte [18] and Hall
[10] augmentedH (p) with simple constraints that prevented the formation ofidti
layouts. Nonetheless, both solutions tend to generateitayath very uneven sparsity,



where many nodes are overcrowded together. Moreover,'Jattd Hall's methods fail
to produce adequate layouts for graphs of low connectivithsas tree-like graphs.

A hypothetical possible way to malkié(p) working for general graphs, is to lay
out the graph over a grid and then minimiz&p) while requiring that each node is
positioned at a unique grid cell. This will ensure a uniforpread of the nodes and
prevent nodes from getting too close to each other. Howevactical implementation
of such a strategy would be quite complicated. The primasyeds that constraining
positions to grid cells transforms the problem into integetimization, which would
be much harder to solve and less scalable.

We avoid integer optimization by adopting a continuousxaiimn of the grid layout
strategy. The relaxation is based on the following costtionc

Gp)= Y _ (lpi —pjll — 1) (3)
i#jEV
This function strives to place all nodes such that theirnpaie distances are uniform.
Notice thatG(p) is independent of the graph structure. The minimundz¢p), as we
have found experimentally, will position the nodes almastarmly within a circle. For
example, consider Fig. 1, where 1024 nodes are positionad sominimizeG(p).

Fig. 1. A Layout of 1024 points that minimize&S(p), by scattering the points within a circle.

The functionG(p) gives us the necessary tool to combat the over dense arees whi
are typical to minimization ofd (p). Thus, the binary stress function for computing a
layout of a graph is defined as a linear combination of the twetions:

Bp)= > lpi—pil>+a > (pi—pil - 1) (4)
(i,j)EE 1#JEV

The first term relates the layout to the graph structure byrémg that edges are short,
whereas the second term makes the nodes spread uniforrhip witircle. The constant
« (discussed later) controls the balance between the twesterm

Our experience shows that bStress results in useful layoutwide families of
graphs. However, before we dwell into the quality of layoggserated by the bStress
model, we would like to discuss computational aspects.

4 Minimizing the Binary Stress Function

The bStress function (4) is structured as a sum of two stigssibns (Eq. (1)), one
with target distances equal to 0, and the other with targagadces equal to 1. This is



the reason for choosing the “binary stress” name. Thoughpé#hticular value of 1 has
no influence on the resulting layout and any other positiveesaould be used as well.

As sum of stress functions, the majorization optimizatexhnique can be exploited
to optimizing bStress. Derivation of the stress major@ativas given by Gansner et al.
[7]. The process used here is as follows:

Let us define twa: x n matrices,L and M. The matrixL is theLaplacian of graph
G, whose associated quadratic form is the sum of squared edg#hkH (p). The other
matrix, M, is associated with a quadratic form that bougtg):

-1 (i,j) e E .
Lij=4 XpziLivi=3 Mm‘:{nllg#]-
0 otherwise =J
We also define two vectors?, b¥ € R"™, which sum all cosines and sines associated
with each node:

_xj
by _
; H zvyt $]7yj || Z ||

Given a current placemeptt) = (z(t), y(t)), an improved placemenpit + 1) =
(z(t+1),y(t+1)), which lowersB(p), is computed by solving the system of equations:

e ©

(M +aL)z(t+1) =", (M +aL)y(t + 1) = b*®) 6)

Now, let us consider computational complexity. The numbbendries in matrix’ is
n—+|E|. The other matrix A/ —is, strictly speaking, dense. However its highly uniform
structure makes it sparse for practical purposes. Typictde stress majorization pro-
cess is solving (6) by using the conjugate gradient methb@waccesseV/ +aL) as
alinear operator. Thus, all we need to ensure is that thaiptod/ +« L)x, can be com-
puted efficiently. This is indeed the case,las sparse, andMz); = nz; — ; ;,
which is computed in a constant time after precompuﬁjng. Thus, the product
(M + aL)z, is computed in tim&(n + | E|).

The more challenging operation is the computation oftthandb¥ vectors of Eq.
(5). This essentially involves computing the angles forragdll node pairs. Here we
follow several recent graph drawing works [9, 11, 17] and theeBarnes-Hut scheme
[1] for approximating theD(n?) interactions in practically)(n log n) time. Thus, we
use a hierarchical geometric decomposition of the drawiag through a quad-tree data
structure. The whole area is assigned to a square (or, axgge}aThen, each square
is subsequently partitioned into four identical squardissach node is lying within a
unique leaf square. See Fig. 2 for an illustration.

Fig. 2. A quad-tree hierarchical space decomposition



Computation ob? andb! is based on a top-bottom traversal of the quad-treevLet
be a quad-tree vertex corresponding to squangth side lengthl. We comparé to d
- the distance between nodand the center of squaself I/d > 6, then we continue
the traversal recursively with the four children @f Otherwise, we halt the traversal
while taking the approximation that all graph nodes lyinghivi squares are at the
same location, and thus can be processed at once. Our defudtfor is 0.5.

In order to give a flavor of actual running times, we report experience with
graphs of varying sizes in Table 1. Times were measured ontuRe4 PC. We let the
majorization process run for 200 iterations, while it wasti@ated earlier oncep(t +
1)—p(t)]|/|lp(t)|| < 0.001. Overall running time is divided among the two components
of the algorithm: (1) solving Eqg. (6) through the conjugatadients iterative process.
(2) Computingd® andb? (Eq. (5)) using a Barnes-Hut approximation. The table shows
that the Barnes-Hut approximation is indeed closely foltmnan O(n log n) running
time. The conjugate gradient component takest+ |E|) time per internal iteration,
but the number of those iterations is less consistent. She®arnes-Hut calculation
is independent of the number edges, as graphs become deesmnjugate gradient
component becomes more significant (see graphs ‘plustkitD’geearbox’). Wall-clock
measured running times are not directly comparable acriffesesht papers, due to
differences in platforms and code optimization. Howeves,believe that the ability of
bStress to lay out of 100,000 nodes in a few minutes, plagemading the more efficient
graph drawing techniques.

name nodes edges iterations conjugate gradient Barne$idfitx  10%x
timelit (sec.) timel/it (sec] f‘%ﬂ*‘: 2. e
nopoly 10774 30034 133 0.019 0.182 [0.477 4.181
skirt 12598 91961 109 0.082 0.272 0.784 5.264
tuma2 12992 20925 13 0.015 0.238 |0.454 4.462
poli_large 15575 17468 200 0.106 0.305 |3.199 4.666
powersim 15838 36430 200 0.045 0.357 |0.869 5.366
ncvxgp9 16554 22493 200 0.023 0.405 |0.598 5.797
Ipl1 32460 147788 200 0.408 0.763 2.261 5.212
finance256 37376 130560 200 0.192 0.749 |1.145 4.385
bcircuit 68902 153328 200 0.328 1.874 |1.476 5.621
plustk10 80676 2114154 159 5.169 2125 |2.355 5.367
Ford2 100196 222246 33 0.582 2.230 [1.806 4.450
gearbox 107624 3250488 200 5.874 3.317 |1.749 6.124
lung2 109460 273646 137 0.272 3.477 |0.710 6.304

Table 1. Running time characteristics for graphs of varying sizes. We measure times faotbernponents of the algorithm:
a conjugate gradient solver, and Barnes-Hut approximation of veetaradb? . The last two columns show the dependency
of running time with graph size. Graphs are taken from [12].

5 Resultsand Implementation Details

The binary stress model is based on unique principles, whiokany cases lead to lay-
outs quite different than those produced by other algosthidence, a key to assessing
the utility of the new model is a qualitative analysis of tadiresults. In the following
subsections we discuss various aspects of bStress throughete layout examples.

5.1 Balancing the system

Recall that bStress is parameterizeddyywhich controls the balance between uniform
spread and structure preservation.dAgrows, the model will prefer shortening edges



over uniformly spreading the nodes. This can significamtfluence the appearance of
the layout. For example, in Fig. 3 we show two layouts of threesgraph, one computed
with o = 1 and the other witl = 1000. Whena is low (=1), the model emphasizes
uniform spread, thus nodes are well separated and visiloleh®other hand, when

is high (=1000), the model cares mostly about exposing thphgs structure through

shortening edges. Thus, the different hubs that form thelgaae clearly shown.
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Fig. 3. Two bStress layouts of a graph with 1933 nodes and 2043 edges. Settingachieves
better separation of nodes and improved area utilization. However, say@refera. = 1000,
for the better abstraction of the graph’s structure.

Notice thatG (p) = >_,.;cy (lpi — p;|| — 1)* contains about® /2 terms, whereas
the other part of bStres#l (p) = >_/; ,ycr IPi — pjl 2| contains only E| terms. Thus,

G(p) becomes more and more dominantr&s|E| grows. This is undesirable, as it
makes the determination of parametefess stable across varying graphs. To offset
some of this phenomenon, our experience shows thaEgs. grows, it is beneficial

to overweightH (p) over G(p). In other words, for sparse graphs, there is no much
structure in the graph and it is reasonable to pay much atet uniform spread.
However, for denser graphs, there is much structure to eeapfrom the connectivity
information. Combining these considerations, we learat thsensible choice to is

¢ - n, for some positive constant Hence, the bStress model becomes:

Bp)= Y lpi—pil*+c-n Y (lpi —pjll = 1) (7)
. (i,j)eE . izjEV

Focusing on values af is easier than focusing on values®@fIn fact, our exper-
iments show that = 1 is a universally reasonable choice, being our default vdtue
some cases, better results are obtained with lower values of

There is another implication to the value @fbeyond layout appearance. We have
found that the majorization optimization process may entenbad local minima when
c is too low. To avoid this, we first run the algorithm with highalues ofc, and then
use the resulting layout for seeding a process with a lewetue. That is, a typical run
would start withc=100, and then restart with=1. Usually, the number of majorization
iterations after restarting the run is relatively low than& the improved initialization.




5.2 Drawingtrees

Prior adaptation of thé (p) function to drawing graphs [10, 18] could not handle trees
and tree-like graphs adequately. The major issue was thditpao prevent many nodes
from collapsing at the same location, thus resulting in &lyignbalanced layout with
much unused area and a few overcrowded locations. Suchuwndsgs not exist with
bStress, as could be evident from the drawing of a tree-Iiaplygiven in Fig. 3. In
fact, as graphs become sparser, results of bStress lo@asingly different than those
computed by alternative models such as the aforementidnesssand electric-spring
models. This is because, the lack of sufficient connectinityrmation let the uniform
spread component;(p), be more dominant in shaping the layout.

As an example, in Fig. 4 we present the drawings of two treéi;iware derived
from an Internet map and a BGP connectivity map. Results tEsS are compared to
the results of the stress function. The known stress modehséo be better at exposing
the decomposition of the tree, whereas bStress achievesuniform node distribution.
The uniform spread achieved by bStress becomes partiguiseful when the number
of nodes is large making area utilization a high priority.

5.3 Disconnected graphs

Most force-directed methods cannot directly handle diseoted graphs. For exam-
ple, the stress model requires defining the distance beteaemtwo nodes, which is
not naturally defined for disconnected nodes. Likewise,dleetric spring model as-
sumes only repulsive forces among connected componetitsatély pushing them
away from each other till infinity. Certainly, various modidtions to those models can
enable working with disconnected graphs. Most notablyheamnected component
can be drawn separately, and later a smart packing algostiuaeezes all components
within the drawing area [5].

Interestingly, bStress handles disconnected graphslgxaetsame way it handles
connected graphs. Thus, unlike other methods, it does gatreeany modification or
postprocessing when addressing disconnectivity. Thisasks to the uniform spread
model G(p)), which strives for a fairly uniform node distribution, glless of con-
nectivity. A small artificial example is brought in Fig. 5, esfe we draw a graph with 11
connected components. As can be seen, bStress could packrgibnents efficiently
together within a circle, while no two components overlap each component is dawn
reasonably. A larger, more realistic example is given in Bjgvhere we show a graph
consisting of many Internet traces. The graph contains EofBected components,
which are all packed pretty well within the layout.

5.4 Fillingacircle

A notable feature of bStress is packing the graph within eeirAdmittedly, the cir-
cular shape of the layout is not a design goal but rather atomé of the chosen cost
function. However, filling the interior of the circle is indé a design goal of the bStress
model. In some cases this can lead to surprisingly lookigguss. For example, some
layouts would be expected to lie on the periphery of a circlewever, bStress will
“insist” on filling the circle with some of the nodes, due te téirict uniform spread re-
quirement. This might look odd at first, but we argue that & &a advantage of enabling
a better distinction between individual nodes.



Internet map (|V|=9227,| E|= 9226)
bStress stress
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BGP connectivity (|V'|=3487,| E|= 3486)
bStress stress

Fig. 4. Comparing stress to bStress in drawing trees

We demonstrate this in Fig. 7. First simple example is a (tmgioal) circle, which
is twisted in order to spread nodes within the interior. Amotexample is the finan512
graph, which became a standard example in works aimed atrdydavge graphs. Pre-
vious works (e.g., [15, 19]) placed all nodes on or close tpkrimeter of a circle.
On the other hand, bStress fills the interior of the circleésmnables a better view of
the local details of this large graph, at the price of an infegxhibition of symmetries.
At this point, we would like to clarify that while frequentthe outline of the layout is
circular, this is not always the case; for example considtgrd:



Fig. 6. An Internet map with 3743 connected componefit§£33552,| E|=29809). Node colors
indicate some known ISPs.

5.5 Distorting thelayout

The uniform spread componerttp), induces layouts where the periphery is denser
than the central area. This effect can be seen in Fig. 1. Letkesa polar coordinates
viewpoint, where the origin is the layout center. We obséhat nodes are uniformly
spread across different angular coordinates, but lessressadifferent radial coordi-
nates. Thus, we propose the following correction as an ogkipostprocessing phase.
We denote the layout density (or, sparsity) around nole d;. This wayd; = 0

for the densest possible area, whiles large when there is a lot of free area around
One way to measuré is to set it to the average distance betweand its topk closest



1000-circle {V'|=1000,| E|= 1000) finan512|{'|=74752,| E|= 261120)

Fig. 7. bStress tends to fill the interior of a circle

nodes in the layout. In our implementation, we compute divel@eighborhood graph
(RNG), and definel; as the average length of edges adjacentiicthe RNG.

We sort all nodes by their radial coordinates, which areadis¢s from the center.
Then, we smooth the computed densities, by averaging éensitnodes with similar
radial coordinates; see Sec. 6 of [8] for a similar procedEneally, for each node,
which comes immediately after nogén the sorted order, we modify the gap in radial
coordinates betweenand;j by multiplying it by 1/d;. Thus, we shrink gaps in sparse
areas, while widening gaps in dense areas.

We include this distortion in our default settings, as itesla negligible time, and
occasionally leads to a modest improvement of layout appear A simple example is
a square grid, whose layout improves when applying the idisioas shown in Fig. 9.

6 Conclusions

The binary stress model leads to unique graph layouts deaized by uniform distri-
bution of nodes within a circular area. This is particuldvgneficial for large graphs,
where efficient utilization of the drawing area becomeslvita addition, the model
is capable of producing decent layouts even for graphs withdonnectivity, where
scant adjacency information cannot define a useful layoitsawn. Computationally,
it combines some of the benefits of both the stress and thé&ietlspring model, fa-
cilitating a simple, yet effective optimization proceduhat scales well for very large
graphs. We believe that it should coexist as a viable optimmgamore familiar models.
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