
SSDE: Fast Graph Drawing Using Sampled
Spectral Distance Embedding

Ali Çivril, Malik Magdon-Ismail and Eli Bocek-Rivele

Computer Science Department, RPI, 110 8th Street, Troy, NY 12180
{civria,magdon}@cs.rpi.edu,boceke@rpi.edu

Abstract. We present a fast spectral graph drawing algorithm for draw-
ing undirected connected graphs. Classical Multi-Dimensional Scaling
yields a quadratic-time spectral algorithm, which approximates the real
distances of the nodes in the final drawing with their graph theoretical
distances. We build from this idea to develop the linear-time spectral
graph drawing algorithm SSDE. We reduce the space and time complex-
ity of the spectral decomposition by approximating the distance matrix
with the product of three smaller matrices, which are formed by sam-
pling rows and columns of the distance matrix. The main advantages of
our algorithm are that it is very fast and it gives aesthetically pleasing
results, when compared to other spectral graph drawing algorithms. The
runtime for typical 105 node graphs is about one second and for 106 node
graphs about ten seconds.

1 Introduction

A graph G = (V,E) is a pair where V is the vertex set and E is the edge set,
which is a binary relation over V . The graph drawing problem is to compute
an aesthetically pleasing layout of vertices and edges so that it is easy to grasp
visually the inherent structure of the graph. In this paper, we only consider
straight-line edge drawings for which a variety of aesthetic criteria have been
studied: number of edge crossings; uniform node densities; symmetry. Depending
on the aesthetic criteria of interest, various approaches have been developed, and
a general survey can be found in [13, 22].

For straight-line edge drawings, the graph drawing problem reduces to the
problem of finding the coordinates of the vertices in two dimensions. A popular
approach is to define an energy function or a force-directed model with respect
to vertex positions, and to iteratively compute a local minimum of the energy
function. The positions of the vertices at the local minimum produce the final
layout. This approach is generally simple and easy to extend to new energy
functions. Various energy functions and force models have been studied (see for
example [6, 12]) and there exist several improvements to handle large graphs,
most of them concentrating on a multi-scale paradigm. Multi-scale approaches
involve laying out a coarser level of the graph first, and then taking advantage
of this coarse layout to compute the vertex positions at a finer level (see for
example [9, 24]).

Spectral graph drawing was first proposed by Hall in 1970 [8] and it has be-
come popular recently. We use the term spectral graph drawing to refer to any
approach that produces a final layout using the spectral decomposition of some
matrix derived from the vertex and edge sets of the graph. A general introduc-
tion can be found in [14]. In this paper, we present the spectral graph drawing
algorithm SSDE (Sampled Spectral Distance Embedding), using a similar formu-
lation that was introduced in [5], which uses Classical Multi-Dimensional Scaling
(CMDS) techniques for graph drawing. CMDS for graph drawing was first intro-
duced in [17] and recently, a similar idea using CMDS technique, was proposed
by Koren and Harel in [15] using a slightly different formulation. CMDS uses the
spectral decomposition of the graph theoretical distance matrix to produce the
final layout of the vertices. In the final layout, the pair-wise Euclidean distances
of the vertices approximate the graph theoretical distances. The main disad-
vantage of this technique from the computational perspective is that one must
perform an all-pairs shortest path computation, which takes O(|V ||E|) time.
The space complexity of the algorithm is also quadratic since one needs to keep
all the pair-wise distances. This prevents large graphs having more than 10, 000
nodes from being drawn efficiently.

SSDE uses an approximate decomposition of the distance matrix, reducing
the space and time complexity considerably. Some theoretical properties of such
matrix decompositions have been studied in [20]. The fact that the distance
matrix is symmetric allows us to express the decomposition in a simpler way.
SSDE consists of three main steps:

(i) Sampling: a constant number c of nodes are sampled from the graph for
which the graph theoretical distances to all other nodes are computed. Let
the matrices C and R denote the corresponding rows and columns of the
distance matrix that have been computed, where R = CT . The complexity
of this step is O(c|E|) for unweighted graphs, using BFS for each sampled
node.

(ii) Computing Φ+: Based on the information in C and R, we form Φ, which
is a c × c matrix keeping the entries which are common in C and R. Since
we need its pseudo-inverse Φ+, the complexity of this step is O(c3), which
involves computing a pseudo-inverse via the singular value decomposition
(SVD) of Φ.

(iii) Spectral Decomposition: We find the optimal rank-d spectral reconstruction
of the product CΦ+R, to embed in d-dimensions. The complexity of this step
is O(cd|V |), using the power iteration, which finds the largest eigenvalues of
a matrix and its associated eigenvectors.

SSDE can be used to produce a d-dimensional embedding, the most practical
being d = 2, 3. We focus on d = 2 in this paper. We present the results of our
algorithm through several examples, including run-times and embedding errors.
Compared to similar techniques, we observe that our algorithm is fast enough
to handle graphs up to 106 nodes in about 10 seconds. A comparison of SSDE
with two popular spectral graph drawing algorithms (HDE and ACE) is given in

SSDE HDE ACE

Fig. 1. Comparison of SSDE with other spectral methods (HDE and ACE) on the
finite element mesh of a cow with |V | = 1820, |E| = 7940.

Figure 1: SSDE produces very good drawings of almost every mesh-like graph we
have tried, with comparable or better running times. One of the main exceptions
is tree-like graphs or more generally graphs with low algebraic connectivity,
which are problematic for all three spectral graph drawing techniques mentioned.

The problem our algorithm addresses is that of embedding a finite metric
space in R2 under the l2-norm [19]. Most research in this area of mathematics
has focused on determining what kinds of finite metric spaces are embeddable
using low-distortion embeddings. Our work does not provide any guarantees on
the distortion of the resulting embedding, which is an active area of research.
We do, however, give the intuition behind why our algorithm constructs a good
embedding using limited data on the distances between the points. Another
paper using this kind of approach is [21], which introduces a different formulation
via the Nystrom approximation.

1.1 Related Work

There are general methods to draw graphs, and detailed information about dif-
ferent approaches can be found in [13, 22]. Our algorithm is based on spectral
decomposition which yields the problem of computing the eigenvalues and eigen-
vectors of certain matrices related to the structure of the graph. The formulation
is mathematically clean, in that exact solutions can be found, because eigenvec-
tors and eigenvalues can be computed exactly in O(|V |3) time. Our work falls
within the category of fast spectral graph drawing algorithms, which is the re-
lated work we elaborate upon.

High-Dimensional Embedding (HDE) described in [10] by Harel and Koren
embeds the graph in a high dimension (typically 50) with respect to carefully
chosen pivot nodes. One then projects the coordinates into two dimensions by
using a well-known multivariate analysis technique called principal component
analysis (PCA), which involves computing the first few largest eigenvalues and
eigenvectors of the covariance matrix of the points in the higher dimension.

ACE (Algebraic multigrid Computation of Eigenvectors) [16] minimizes Hall’s
Energy function E = 1

2

∑n
i,j=1 wij(xi − xj)

2 in each dimension, modulo some
non-degeneracy and orthogonality constraints (n is the number of nodes, xi is
the one-dimensional coordinate of the ith node and wij is the weight of the edge

between i and j). This minimization problem can be reduced to obtaining the
eigen-decomposition of the Laplacian of the graph. A multi-scaling approach is
also used, creating coarser levels of the graph and relating them to the finer
levels using an interpolation matrix.

Both of the methods described above are fast due to the small sizes of the
matrices processed. Specifically, the running time of ACE depends on the struc-
ture of the graph while HDE provides better image quality and run-times. But,
they may result in aesthetically unpleasant drawings of certain graphs and some
of these problems are illustrated in Figure 1.

1.2 Notation

We use i, j, k, . . . for indices of vectors and matrices, bold uncapitalized letters
x,y, z for vectors in Rd and bold capitalized letters for matrices. Typically,
M,N are used to represent n×n matrices and X,Y,Z for n×d matrices, which
represent n vectors in Rd. A(i) denotes the ith row of the matrix A and A(i)

denotes its ith column. The pseudo-inverse of a matrix A is denoted as A+. The
norm of a vector ∥x∥ is the standard Euclidean norm. The transpose of a vector
or a matrix is denoted as xT ,MT .

2 Spectral Decomposition of the Distance Matrix and
CMDS

Given a graph G = (V,E) with n nodes, let V = {v1, v2, . . . , vn}. The distance
matrix D is the symmetric n × n matrix containing all the pair-wise distances,
i.e., Dij is the length of the shortest path between vi and vj . Suppose that the
position at which vertex vi is placed is xi. We are seeking a positioning that
approximates the graph theoretical distances with the Euclidean distances, i.e,

∥xi − xj∥ ≈ Dij , for i, j = 1, 2, . . . , n. (1)

A suitable algebraic manipulation as presented in [4] on (1) yields the following
equation, which is the basic idea of CMDS:

YYT ≈ −1

2
γLγ = M. (2)

whereY is an n×dmatrix containing the coordinates of the points, L is the n×n
matrix keeping the squares of the distances between nodes and γ = 1

nIn−1n1n
T

is a projection matrix. We want to approximate M as closely as possible. The
metric that CMDS chooses is the spectral norm, so we wish to find the best
rank-d approximation to M with respect to the spectral norm. This is a well-
known problem, which is equivalent to finding the largest d eigenvalues of M.
The final centralized coordinates are then given by Y = [

√
λ1u1, . . . ,

√
λdud],

where λ1, . . . , λd are the first d eigenvalues ofM and u1, . . . ,ud are the associated
eigenvectors.

CMDS(G)
1: Compute D using an APSP algorithm on G
2: Define matrix L such that Lij = D2

ij .
3: return Y = PowerIteration(− 1

2
γLγ, ϵ)

Fig. 2. The spectral graph drawing algorithm based on CMDS.

Finding a rank-d approximation of M = − 1
2γLγ, which corresponds to com-

puting the largest d eigenvalues and eigenvectors, is performed by a standard
procedure typically referred to as the power iteration, rather than by an exact
algorithm which would have O(|V |3) time complexity.

3 Approximate Distance Matrix Reconstruction

The running time of the CMDS technique is quadratic in terms of the number
of nodes even for sparse graphs since one needs to compute and store all-pairs’
shortest path lengths. In this section, we will first briefly explain the intuition
behind SSDE, which breaks the quadratic complexity of this technique and actu-
ally yields a fast, linear time algorithm. Then, we will present the mathematical
formulation.

3.1 Intuition

SSDE tries to construct an approximation to the distance matrix without com-
puting all the entries in it. In the previous section, we noted that the distance
matrix might have rank larger than d. But, the rank of the distance matrix is
expected to be small in terms of the number of nodes in the graph, even if it
is larger than d. This intuitive reasoning stems from a famous result from low
distortion embedding theory. In 1984, Johnsson and Lindenstrauss [11] proved
that n points in high dimension can be embedded into O(log n

ϵ2) dimensions with
ϵ distortion. This means, roughly speaking that the set of points can be recon-
structed in low dimension while preserving all the pair-wise distances and hence
that the effective rank of the distance matrix is much smaller than its full di-
mension. This suggests that one can extract much of the information about the
matrix by performing computations on matrices having much smaller ranks.

Specifically, SSDE approximates the distance matrix with the product of
three smaller matrices, which have linear size in terms of the number of nodes in
the graph. In order to do this, reasoning from the fact that the distance matrix
has low rank, the columns of the distance matrix can approximately be ex-
pressed as a linear combination of a small number of its columns. The algorithm
essentially consists of choosing this small number of columns, constructing the
whole matrix appropriately and computing the coordinates of the vertices via

the spectral decomposition of this matrix. A variant of the particular approxi-
mation that we will use has been studied in [20]. In [20], the sampling approach
used assumes that the whole matrix is known using one pass. Since, this would
lead to a quadratic time algorithm, our approach must use online sampling. One
can either sample the columns randomly or use a simple greedy algorithm, which
seems to give a better set of columns.

3.2 Formulation

Let i1, i2, . . . , ic be a set of distinct indices where c is a predefined positive integer
smaller than n and 1 ≤ ik ≤ n for k = 1, . . . c. Let C = [L(i1),L(i2), . . . ,L(ic)]. If
C is chosen carefully, under the assumptions mentioned above, any column L(i)

can approximately be written as a linear combination of the columns of C, i.e.

L(i) ≈ Cα(i) for i = 1, 2, . . . , n, (3)

where α(i) is a c× 1 vector. Denoting α = [α(1),α(2), . . . ,α(n)], we have

L ≈ Cα (4)

Let Φ be the c × c matrix such that Φjk = Lij ik for j, k = 1, . . . c. Note that
since we also have CT = [L(i1),L(i2), . . . ,L(ic)], Φ can be interpreted as the
intersection of C and CT on the matrix L. Now, since the columns of L can
approximately be expressed as a linear combination of the columns of C, the
columns of CT can also be expressed as a linear combination of the columns of
Φ. This gives

CT ≈ Φα (5)

where α is the same matrix as we defined above. If Φ has full rank, (5) yields
α = Φ−1CT . Combining this with (4), we have L = CΦ−1CT . More generally,
we do not assume that Φ has full rank, so we have

L ≈ CΦ+CT (6)

where Φ+ is the pseudo-inverse of Φ (See [7] for the definition of pseudo-inverse).
The last expression indicates that we can approximate the distance matrix L by
the multiplication of three smaller matrices, which all have at most linear size
in terms of n. Note that C is n× c and Φ is c× c.

4 The Algorithm SSDE

The algorithm SSDE, which uses the procedures that we will define shortly is
summarized in Figure 5. As stated in the introduction, the algorithm consists of
three main steps:

(1) Sampling: The first step of the algorithm is to compute the columns that
define C and Φ. This is equivalent to choosing a particular set of nodes and
computing the graph theoretical distances to all other nodes in the graph.
We propose two methods to sample c nodes:
(i) Random Sampling: The c nodes are sampled uniformly at random.
(ii) Greedy Sampling: The first node is chosen uniformly at random. Then,

at each step, we choose the furthest node to the set of nodes that have
already been chosen until c nodes are chosen.

Note that, the second method stated above is also known to be a 2-approximation
algorithm to the k-center problem [23]. This method was also used in [9] and
[10]in different contexts. The procedure for performing these operations is
presented in Figure 3. Even though c can be treated as a parameter to the al-
gorithm, we have experienced that setting c = 25 is enough for getting good
results on practically all graphs we have tried. The sampling step, overall
requires O(c|E|) time as we initiate a BFS from c nodes in the graph.

ComputeCandPhi(G, method,
c)
1: if method = random then
2: Select c vertices uniformly at random
3: for k = 1 to c do
4: Ck ← dist(ik, V) // BFS
5: end for
6: else if method = greedy then
7: i1 ← unifrnd(1, |V |) // Choose uniformly at

random
8: C1 ← dist(i1, V) // BFS
9: for k = 2 to c do
10: ik ← max

1≤j≤n
min

1≤l≤k
{Cjl} // Choose the fur-

thest node
11: Ck ← dist(ik, V) // BFS
12: end for
13: end if
14: Compute Φ // Φk j = Cik j

15: return (C,Φ)

Fig. 3. The procedure computing the matrices C and Φ.

(2) Computing Φ+: We find the pseudo-inverse Φ+ by first computing the sin-
gular value decomposition Φ = UΣVT , which can be performed in O(c3)
time using standard procedures (see for example [7]). The pseudo-inverse can
then be computed by the expression Φ+ = VΣ+UT . Here, Σ+ is the diago-
nal matrix keeping the reciprocals of the non-zero singular values, which are
stored in Σ. Unfortunately, in order to get numerically stable results, it is

not enough to compute the reciprocals of the singular values, since the small
singular values which are close to zero should actually be ignored, as they
may be the result of numerical imprecision and will result in huge instability
in Σ+. To prevent such instability, we use a regularization method that was
presented in [18], which uses the expression

σi

σi
2 + α/σi

2
(7)

for the reciprocals in Σ+, where σi is the ith diagonal entry in Σ. The pa-
rameter α is the regularization parameter, which must be chosen judiciously
in order not to distort the reciprocals of the large singular values too much.
On the other hand, it should result in values close to zero for the small
singular values. Our experiments revealed that α = σ1

3 is good enough for
practical purposes where σ1 is the largest singular value. However, we keep
it as a parameter of the procedure.

(3) Spectral Decomposition: Having computed the pseudo-inverse of Φ, we com-
pute L̂ = CΦ+CT from which we obtain M̂ = −1

2γL̂γ. Then, analogous
to (2), we obtain the coordinates of the points in the embedding using the
spectral decomposition of M̂, which approximates M. This requires com-
puting the top d eigenvalues and eigenvectors, for which we use a standard
procedure called the power iteration (See Figure 4). In the power iteration,
the main computational task is to repetitively multiply a randomly chosen
vector with the matrix whose eigenvalues and eigenvectors are sought. In
our power iteration, starting from the right, the matrix-vector multiplica-
tions (line 5 and line 15) can be performed using O(c|V |) scalar additions
and multiplications. The total number of iterations until a predefined con-
vergence condition holds, depends on the matrix processed. But, since the
convergence is exponential (see for example [7]), in practice, a constant num-
ber of iterations is enough. Overall, the running time of the power iteration
step of the algorithm is O(c|V |).

The embedding is obtained directly from the eigenvectors and eigenvalues,
which are returned by the power iteration.

5 Results

We have implemented our algorithm in C++, and Table 1 gives the running
time results on a Pentium 4HT 3.0 GHz processor system with 1 GB of memory.
We present the results of running the algorithm on several graphs of varying
sizes up to about 2, 000, 000 nodes. We set c = 25, since our experiments have
revealed that this is enough to get good drawings. For the power iteration, we
set the tolerance ϵ = 10−7. The running times in Table 1 do not include the file
I/O that is used to access and store the coordinates of the nodes. In Table 1, we
present the results for CMDS and SSDE with c = 25, 50 and greedy sampling.
Along with the running time, we also give the Frobenius norm of the relative

PowerIteration(C, Φ+, ϵ)
1: current← ϵ; y1 ← random/∥random∥
2: repeat
3: prev ← current
4: u1 ← y1

5: y1 ← − 1
2
γCΦ+CTγu1

6: λ1 ← u1 · y1 % compute the eigenvalue
7: y1 ← y1/∥y1∥
8: current← u1 · y1

9: until |current/prev| ≤ 1 + ϵ
10: current← ϵ; y2 ← random/∥random∥
11: repeat
12: prev ← current
13: u2 ← y2

14: u2 ← u2−u1(u1 ·u2) % orthogonalize against
u1

15: y2 ← − 1
2
γCΦ+CTγu2

16: λ2 ← u2 · y2 % compute the eigenvalue
17: y2 ← y2/∥y2∥
18: current← u2 · y2

19: until |current/prev| ≤ 1 + ϵ
20: return (

√
λ1y1

√
λ2y2)

Fig. 4. The power iteration method for finding eigenvectors and eigenvalues (d = 2).

error matrix for the embedding, ϵ, where ϵij = 1 −D′
ij/Dij and D,D′ are the

true distance matrix and distance matrix implied by the embedding respectively.
The normalized Frobenius errors computed in Table 1 are defined as

∥ϵF ′∥ =

√√√√ 1

n2

∑
i ̸=j

(1−
D′

ij

Dij
)2. (8)

These errors might be interpreted as a quantification of the quality of the
embedding, and can be used to compare SSDE to CMDS. As can be inferred
from Table 1, SSDE is a good approximation to CMDS, which becomes more so
as c increases.

SSDE is able to draw graphs up to 106 nodes in about ten seconds, which
is comparable to the other fast spectral methods. The last three graphs in the
table are road maps of states [1]. As is empirically verified from these graphs,
the asymptotic running time of the algorithm is linear. Figure 6 demonstrates
the quality of the drawings for some benchmark graphs. In all the graphs ex-
cept finan512, we used the greedy sampling method. Random sampling seems to
work better for finan512 because of its special structure. We have observed that
the algorithm is able to reveal the general structure of almost all the graphs we
tested, as well as the finer structure of some of the graphs successfully, where

SSDE(G, method)
1: (C,Φ)← ComputeCandPhi(G, method, c)
2: (U,Σ,VT)← SVD(Φ)
3: Σ+ ← Regularize(Σ, α)
4: Φ+ ← VΣ+UT

5: return Y = PowerIteration(C,Φ+, ϵ)

Fig. 5. The spectral graph drawing algorithm SSDE.

other spectral methods have difficulty. An example is the finan512 graph, where
the overall structure is clearly visible, and one can also see the finer structure
of the small ”towers” attached to the main cycle. Figure 7 compares the results
of the exact algorithm CMDS, and SSDE, which is approximate but far more
efficient. We demonstrate the results of SSDE for both random and greedy sam-
pling. The figure shows that SSDE does not sacrifice much in the way of picture
quality as compared to CMDS. For all the drawings mentioned, it is impor-
tant to note that exact pictures may change depending on which specific nodes
are sampled, but the typical structure is consistent. The quality of the drawing
for random and greedy sampling also doesn’t differ much, but our experiments
showed that the greedy sampling tends to give more consistent results.

Graph |V| |E| CMDS SSDE(c=25) SSDE(c=50)
∥ϵF ′∥ Time(sec) ∥ϵF ′∥ Time(sec) ∥ϵF ′∥ Time(sec)

3elt 4720 13722 0.382 8.47 0.432 0.015 0.398 0.04
sierpinski08 9843 19683 0.17 24.72 0.203 0.03 0.19 0.07
Grid 100x100 10000 19800 0.17 29.73 0.192 0.03 0.186 0.06
crack 10240 30380 0.085 45.00 0.103 0.045 0.09 0.10
4elt2 11143 32818 0.252 48.77 0.291 0.07 0.283 0.14
4elt 15606 45878 0.308 133.33 0.375 0.13 0.342 0.25
sphere 16386 49152 0.291 136.69 0.334 0.14 0.312 0.27
finan512 74752 261120 - - - 0.68 - 1.43
ocean 143437 409593 - - - 1.65 - 3.56
144 144649 1074393 - - - 2.85 - 6.03
wave 156317 1059331 - - - 2.40 - 4.78
auto 448695 3314611 - - - 9.96 - 21.67
Florida 1048506 1330551 - - - 10.04 - 23.45
California 1613325 1989149 - - - 17.91 - 36.13
Texas 2073870 2584159 - - - 21.69 - 45.89

Table 1: Running time and embedding errors of CMDS and SSDE for several
graphs. (Most of these graphs can be downloaded from [1], [2] and [3]). Missing
entries are graphs where it was too costly to compute the entire distance matrix.

(a) (b)

(c) (d)

Fig. 6. Layouts of (a) 50x50 grid with |V | = 2500, |E| = 4900, (b) 3elt with |V | =
4720, |E| = 13722, (c) cti with |V | = 16840, |E| = 48232, (d) finan512 with |V | =
74752, |E| = 261120.

6 Conclusion and Future Work

We have presented a fast spectral graph drawing algorithm, which significantly
improves the idea of Classical Multi-Dimensional Scaling (CMDS), by using
sampling techniques over nodes to reduce the time complexity of computing the
distance matrix. We use a sparse approximation to the distance matrix obtained
through sampling. The spectral decomposition of this sampled matrix yields
the desired embedding. The running time of our algorithm is mainly governed
by the shortest path computations for the sampled nodes and the power itera-
tion procedure where we compute the coordinates of the points via the spectral
decomposition, which in total is linear in the size of the graph. SSDE gives com-
petitive running times with very good drawings for a broad range of graphs, and
at the same time it does not sacrifice quality as compared to CMDS.

The typical graphs for which SSDE is not suited are graphs with low algebraic
connectivity (such as trees for which special purpose algorithms exist) and dense
graphs which are difficult to visualize anyway. Usually, as the graph gets denser,
the sampled nodes cannot extract enough information about the spectrum of
the distance matrix. We would like to mention that this shortcoming of SSDE

CMDS SSDE Greedy SSDE Random

4970
|V | = 4970
|E| = 7400

running time = 5.04 sec. running time = 0.01 sec. running time = 0.01 sec.

sierpinski08
|V | = 9843
|E| = 19683

running time = 24.72 sec. running time = 0.03 sec. running time = 0.03 sec.

Fig. 7. Comparison of pure CMDS and SSDE

applies to many real world graphs. However, these are issues faced by all the fast
spectral methods discussed here.

The rigorous mathematical analysis of sampling methods and specifically
their implications on the error of the difference between the real distance matrix
and the approximation is the context of future work. The sampling step intu-
itively tries to pick a set of columns whose volume in |V | dimensions is as large
as possible, which implies a better approximation to the distance matrix. An
interesting problem would be to consider the performance of greedy sampling
with respect to the optimal choice of samples.

References

1. http://www.dis.uniroma1.it/~challenge9/data/tiger/.
2. http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/

graphs.html.
3. http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/.
4. I. Borg and P. Groenen. Modern Multidimensional Scaling. Springer-Verlag, 1997.
5. A. Çivril, M. Magdon-Ismail, and E. Bocek-Rivele. SDE: Graph drawing using

spectral distance embedding. In GD’05, pages 512–513, 2005.
6. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed place-

ment. Software - Practice And Experience, 21(11):1129–1164, 1991.
7. G. H. Golub and C.H. Van Loan. Matrix Computations. Johns Hopkins U. Press,

1996.
8. K. M. Hall. An r-dimensional quadratic placement algorithm. Management Sci-

ence, 17:219–229, 1970.

9. D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. In
GD’00, volume 1984, pages 183–196, 2000.

10. D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. In GD’02,
2002.

11. W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space.
Contemp. Math., 26:189–206, 1984.

12. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7–15, 1989.

13. M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Models.
Number 2025 in LNCS. Springer-Verlag, 2001.

14. Y. Koren. On spectral graph drawing. In COCOON 03, volume 2697, pages 496–
508, 2003.

15. Y. Koren. One dimensional layout optimization, with applications to graph drawing
by axis separation. Computational Geometry: Theory and Applications, 32:115–
138, 2005.

16. Y. Koren, D. Harel, and L. Carmel. Drawing huge graphs by algebraic multigrid
optimization. Multiscale Modeling and Simulation, 1(4):645–673, 2003. SIAM.

17. J. B. Kruskal and J. B. Seery. Designing network diagrams. In Proc. First General
Conference on Social Graphics, 1980.

18. J. Maeda and K. Murata. Restoration of band-limited images by an iterative
regularized pseudoinverse method. Journal of Optical Society of America, 1(1):28–
34, 1984.

19. J. Matousek. Open problems on embeddings of finite metric spaces. Discr. Comput.
Geom., to appear.

20. P.Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for
matrices III: Computing a compressed approximate matrix decomposition. SIAM
Journal on Computing, 36(1):184–206, 2006.

21. J. C. Platt. FastMap, MetricMap, and landmarkMDS are all Nystrom algorithms.
In Proc. 10th Int. Workshop on Artificial Intelligence and Statistics, pages 261–268,
2005.

22. I. G. Tollis, G. Di Battista, P. Eades, and R. Tamassia. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

23. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.
24. C. Walshaw. A multilevel algorithm for force-directed graph drawing. In GD’00,

volume 1984, 2000.

