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Abstract

We describe a 3
2 -approximation algorithm for the Forest Augmentation Problem (FAP), which

is a special case of the Weighted 2-Edge-Connected Spanning Subgraph Problem (Weighted 2-
ECSS). This significantly improves upon the previous best ratio 1.9973, and proceeds toward
the goal of a 3

2 -approximation algorithm for Weighted 2-ECSS.

1 Introduction

The following is a well-studied problem in network design: Given an undirected simple graph
G = (V,E), find a 2-edge-connected spanning subgraph (2-ECSS) of G with minimum number
of edges. We denote this problem briefly as 2-ECSS. It remains NP-hard and APX-hard even for
subcubic graphs [10]. After a series of improvements beyond the trivial approximation factor 2
[8, 18, 21, 26], the current best approximation factor for the problem is 4

3 − ϵ for some constant
1

130 > ϵ > 1
140 [14]. The generalization of this problem in which there is a cost function c : E → Q≥0,

which we denote by Weighted 2-ECSS, admits 2-approximation algorithms [19, 21]. Improving this
factor has been a major open problem for over three decades. In particular, by a result of Cheriyan
et al. [7], the integrality gap of the natural LP relaxation for the problem is lower bounded by 3

2 ,
and it is likely that there is an approximation algorithm with the same ratio. As a progress towards
this goal, intermediate problems between 2-ECSS and Weighted 2-ECSS have received tremendous
attention, especially in the last decade. The most general of them is the Forest Augmentation
Problem (FAP) in which the cost function is defined as c : E → {0, 1}, and the zero-cost edges form
a forest. A recent result [16] improves the approximation ratio to 1.9973 for FAP.

As the problem is wide open, even further special cases beyond FAP have been considered.
One of them is the Matching Augmentation Problem (MAP) in which the zero-cost edges form a
matching. This problem admits approximation ratios 7

4 [4], 5
3 [3], and 13

8 [15]. A further special
case is the Tree Augmentation Problem (TAP) in which the zero-cost edges form a tree. Several
results with ratios better than 2 have appeared in the literature including [1, 5, 6, 9, 11, 12, 13, 17,
20, 22, 23, 24, 25, 27, 28]. The current best approximation ratio attained is 1.393 [2].

The purpose of this paper is to prove the following theorem via an elegant algorithm. This
significantly improves upon the previous best ratio 1.9973, and gives a hint that there might indeed
be a 3

2 -approximation algorithm for the more general Weighted 2-ECSS.

Theorem 1. There exists a polynomial-time 3
2 -approximation algorithm for FAP.

*Istanbul Atlas University, Computer Engineering Department, Kagithane, 34408 Istanbul, Turkey, e-mail:
ali.civril@atlas.edu.tr

1



2 Preliminaries

We will use the lower bound derived from the dual of the natural LP relaxation for FAP. Here, δ(S)
denotes the set of edges with one end in the cut S and the other not in S.

minimize
∑
e∈E

c(e)xe (FAP)

subject to
∑

e∈δ(S)

xe ≥ 2, ∀ ∅ ⊂ S ⊂ V,

1 ≥ xe ≥ 0, ∀ e ∈ E.

The following is the dual of (FAP).

maximize
∑

∅⊂S⊂V

2yS −
∑
e∈E

ze (FAP-D)

subject to
∑

S:e∈δ(S)

yS ≤ c(e) + ze, ∀e ∈ E,

yS ≥ 0, ∀ ∅ ⊂ S ⊂ V,

ze ≥ 0, ∀ e ∈ E.

We assume that the input graph G is 2-connected, since the value of an optimal solution
for FAP is the sum of those of blocks (maximal 2-connected subgraphs), and one can argue the
approximation ratio only within a block. Given a set of edges F , we define c(F ) :=

∑
e∈F c(e).

Given a vertex v ∈ V and a 2-connected spanning subgraph (2-VCSS) of F , if the degree of v in the
graph (V, F ) is at least 3, it is called a high-degree vertex on F . For a path P = v1v2 . . . vk−1vk, v1
and vk are the end vertices of P , and all the other vertices are the internal vertices of P . A path
whose internal vertices are all degree-2 vertices on F is called a plain path on F . A maximal plain
path is called a segment. The length of a segment is the number of edges on the segment. If the
length of a segment is ℓ, it is called an ℓ-segment. A 1-segment is also called a trivial segment. An
ℓ-segment with ℓ ≥ 2 is called a short segment if ℓ ≤ 3, otherwise a long segment. If the removal
of a segment from F violates 2-connectivity, it is called a weak segment on F , otherwise a strong
segment on F . A set of edges H ⊆ F is called a special maximal set on a 2-VCSS F if it satisfies
the following: (1) It consists of zero-cost edges; (2) Contracting the edges in H results in a minimal
2-VCSS; (3) H is maximal.

3 The Algorithm for FAP

Recall that we assume G is 2-connected. The first step of the algorithm computes an inclusion-
wise minimal 2-VCSS F as follows: Set F = E and perform deletion of edges one by one starting
from the unit-cost edges, followed by zero-cost edges, as long as feasibility is maintained. This
reverse-delete operation gives priority to the zero-cost edges. In the second step, the algorithm
first contracts all the zero-cost edges in E \ F to form the graph G′ = (V ′, E′). The rest of the
algorithm is assumed to run on the blocks of G′, as we did for G. Given this, F is updated to an
inclusion-wise minimal 2-VCSS of G′, prioritizing zero-cost edges, exactly as done in the first step.
This is followed by contracting a special maximal set on F , thus also updating G′.

In the third step, the algorithm recursively modifies the running solution F via improvement
processes. Given a strong 2-segment S on F and its internal vertex u, let NE(u) denote the set of
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Algorithm 1: FAP(G(V,E))

1 // First step
2 Let F be an inclusion-wise minimal 2-VCSS of G, which prioritizes zero-cost edges over

unit-cost edges

3 // Second step
4 Contract all the zero-cost edges in E \ F to obtain G′ = (V ′, E′)
5 Let F be an inclusion-wise minimal 2-VCSS of G′, which prioritizes zero-cost edges over

unit-cost edges
6 Contract a special maximal set on F , also updating G′

7 // Third step: Improvement operations
8 while there is a strong 2-segment S on F such that no improvement process has been

called on its internal vertex u do
9 Improvement-Process(G′, F, S, u)

10 return F

Algorithm 2: Improvement-Process(G′, F, S, u)

1 if there is an improvement operation that can be performed on u then
2 Apply the improvement operation on u
3 return

4 for each critical edge set A incident to u do
5 Let S be the set of strong 2-segments on F ∪A that do not exist on F
6 for each strong 2-segment T in S and the internal vertex v of T do
7 if no improvement process has been called on (T, v) then
8 Improvement-Process(G′, F ∪A, T, v)
9 if there is an improvement operation performed in

Improvement-Process(G′, F ∪A, T, v) then
10 Perform deletion operation on F ∪A in the order F , A
11 return

12 if there is no improvement operation performed in any of the recursive calls above then
13 Restore F to the original set considered before the function call

edges incident to u in E. An improvement process first tries to replace F by (F \ B) ∪ A while
maintaining feasibility, where A ⊆ E \ F is a set of k edges called a critical edge set, and B ⊆ F
is a set of k + 1 edges, 1 ≤ k ≤ 2. We seek such A to be a subset of NE\F (u). If there is such A,
the described operation is called an improvement operation. Two improvement operations and the
corresponding critical edge sets are given in Figure 1 and Figure 2, where all the included and the
excluded edges are of unit-cost.

If no improvement operation can be performed, fixing a critical edge set A incident to u, the
algorithm checks if F ∪ A contains new strong 2-segments that do not exist on F . If it does, it
calls the procedure described above for S and u recursively on the internal vertices of the newly
appearing strong 2-segments provided that no improvement process has been previously called
on the internal vertex of a given segment. These calls are performed for all A on u and for each
u ∈ S. If there is an improvement operation in one of the recursive calls, the called function returns
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Figure 1: An example of an improvement operation in which the critical edge set is shown in
dotted lines on the left

Figure 2: An example of an improvement operation in which the critical edge set is shown in
dotted lines on the left

Figure 3: An example of an improvement process of recursion depth 2

and the caller performs a specific reverse-delete operation by attempting to delete the edges from
F ∪A in the order F , A, while maintaining feasibility. This enforces to keep the edges in A in the
solution. An examples of this operation is given in Figure 3, where all the included and excluded
edges are of unit-cost, and the depth of the recursion tree is 2 After the reverse-delete operation,
the current function call returns. If after all the recursive calls from u there is no improvement
operation performed, the solution F is restored back to the original one before the function call on
u. The main iterations continue until there is no S and u on which we can perform an improvement
process.

Proposition 2. Algorithm 1 can be implemented in polynomial-time.

Proof. It is clear that the first and the second step of the algorithm can be implemented in
polynomial-time. To see that the third step also takes polynomial time, it suffices to see that
the main loop of Improvement-Process terminates in polynomial number of operations. There
are polynomially many critical edge sets A, since |A| is constant. Starting from the internal vertex
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u of a strong 2-segment S, consider the recursion tree in which each node represents a recursive
function call. By definition, each node of this tree is associated to the internal vertex of a strong
2-segment. A vertex can be the internal vertex of a single strong 2-segment. This implies that the
number of nodes in the tree is polynomially bounded. So the main loop of Improvement-Process
terminates in polynomial number of operations.

4 Proof of Theorem 1

Let opt(G) denote the value of an optimal 2-ECSS on G, and opt(G′) denote the value of an
optimal 2-ECSS on G′ = (V ′, E′), the result of the second step of the algorithm. Let F be a
solution returned by Algorithm 1.

Lemma 3. opt(G) ≥ opt(G′).

Proof. Take an optimal 2-ECSS O on G. Let O′ be the intersection of O with all the zero-cost
edges contracted in the second step of the algorithm. Then O′ is a feasible solution for G′, which
implies the result.

Lemma 4. There exists a graph G1 and a 2-VCSS F1 ⊆ E(G1) such that the following hold:

1. Given the internal vertex s of a strong 2-segment on F1, there is no edge e ∈ E(G1) \ F1

incident to s.

2. F1 is minimal with respect to inclusion.

3. c(F1)
opt(G1)

≤ 3
2 ⇒ c(F )

opt(G′) ≤
3
2 .

Proof. We reduce G′ to G1 and F to F1 by performing a series of operations. Let S be a strong
2-segment on F , and s be its internal vertex. Let O be an optimal 2-ECSS on G′. Then O contains
two edges incident to s, say e1 and e2. Assume it contains a third edge e3 incident to s. Let the
other end vertices of these edges be w1, w2, and w3, respectively. If O contains all the edges incident
to wi that are in F , we call wi a special vertex, for i = 1, 2, 3. Note that none of e1, e2, and e3 is a
zero-cost edge by the construction of G′. To finish the proof of the lemma, we need the following
two claims.

Claim 5. We can switch to an optimal solution O such that there is at most one special vertex in
the set {w1, w2, w3}.

Proof. Assume without loss of generality that w1 and w2 are special vertices. Then by the structure
of a 2-ECSS, we can discard e1 or e2 from O without violating feasibility.

Claim 6. There exists an optimal 2-ECSS O′ on G′ such that O′ contains 2 edges incident to s.

Proof. By Claim 5, there are at least two vertices in the set {w1, w2, w3} that are not special. Let
two of them be without loss of generality w2 and w3. By the structure of a 2-ECSS, one of these
vertices, say w2, satisfies the following. There is a neighbor w′

2 of w2 such that f = (w2, w
′
2) ∈ F \O,

and O′ = O ∪ {f} \ {e2} is another optimal solution. In this case the degree of s on O′ is 2, which
completes the proof.
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Let O′(S) be the set of edges in this solution incident to the internal vertex of S. Let F ′ =
F ∪ O′(S) \ P be a minimal 2-VCSS on G, where P ⊆ F \ O′(S). Let E(S) denote the set of
edges incident to the internal vertex of S on E(G′), which excludes the edges in O′(S), and note
that it contains P . Delete the edges in E(S) from G′ to obtain G′′. Perform these operations,
including the switch to an optimal solution implied by Claim 6, recursively on the new strong
2-segments that appear on F ′, which we call emerging segments. Note that since none of the
aforementioned vertices w1, w2, and w3 can be the internal vertex of a strong 2-segment due to an
improvement operation, the switch from O to O′ cannot be reversed. After the recursion starting
from S terminates, continue performing the described operations on the strong 2-segments on the
residual solution and the graph. Let the results be F1 and G1. Note that the first claim of the
lemma also holds, since there is no edge in E(G1) \ F1 incident to the internal vertex of a strong
2-segment on F1 by construction. The second claim of the lemma follows from Claim 6. We now
show that the third claim holds.

Claim 7. c(F1) ≥ c(F ).

Proof. Let S be a strong 2-segment on which we start the recursive operations above or an emerg-
ing segment. The inequality c(P ) > c(O′(S)) derives a contradiction to the algorithm and the
construction of F1, since there is no improvement process performed on S that has improved the
cost of the solution. In particular, by all the listed improvement operations we cannot have the
configurations on the left hand sides of Figure 1-Figure 3. We thus have c(P ) ≤ c(O′(S)), which
implies c(F1) ≥ c(F ).

We next note that opt(G1) ≤ opt(G′). This follows from our construction ensuring that there is an
optimal solution O such that for any strong 2-segment S on F1, E(S) does not contain any edge

from O. Combining this with Claim 7, we obtain c(F1)
opt(G1)

≥ c(F )
opt(G′) , which implies the third claim

of the lemma, and completes the proof.

Let F0 be the result of the first step of the algorithm, and F ′
0 be the result of the second step

of the algorithm. Let G1 and F1 be as implied by Lemma 4.

Lemma 8. Let u be the internal vertex of a strong 2-segment on F0. Then there is no zero-cost
edge e ∈ E \ F0.

Proof. The existence of such an edge e contradicts the reverse-delete operation in constructing F0,
which gives precedence to zero-cost edges. In particular, this operation must include e into the
solution.

Lemma 9. There is no self-loop e ∈ F with c(e) = 1.

Proof. Let e ∈ F be a self-loop on u ∈ V ′ with c(e) = 1. Let NE\F0
(u) be the set satisfying the

following: (1) Its elements belong to the (non-empty) set of zero-cost edges in NE\F0
(u) contracted

in the second step of the algorithm to obtain G′ = (V ′, E′); (2) Its elements are incident to the
vertices in V that are identified by u ∈ V ′. Then (F0 \ {e}) ∪ NE\F0

(u) is feasible, and hence
NE\F0

(u) must have been selected in the first step of the algorithm, which prioritizes zero-cost
edges. This however excludes e from the solution, deriving a contradiction.

Lemma 10. E′ either consists of a single double-edge e with c(e) = 1, or there is no double-edge
e ∈ E′ with c(e) = 1.
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Proof. Recall that we assume G′ = (V ′, E′) is 2-connected. Suppose E′ is not equal to a set
consisting of a single double-edge. Let e = (u, v) ∈ E′ be a double-edge with c(e) = 1. Let
NE\F0

(u) be the set satisfying the following: (1) Its elements belong to the (non-empty) set of
zero-cost edges in NE\F0

(u) contracted in the second step of the algorithm; (2) Its elements are
incident to the vertices in V that are identified by u ∈ V ′. Then the first step of the algorithm,
which prioritizes zero-cost edges, keeps NE\F0

(u)∪NE\F0
(v) in the solution, and thus excludes one

of the edges defining e. This derives a contradiction.

Lemma 11. Let F ′ be the union of F and the set of contracted edges in the second step of the
algorithm. Then F ′ is a feasible solution for G.

Proof. The statement is clear if E′ (hence F ) consists of a single double-edge. Otherwise, we have
by Lemma 10 that there is no double edge in E′. Given this, take an edge e = (u, v) contracted in
the second step of the algorithm. By Lemma 8, neither u nor v is an internal vertex of a strong
2-segment on F0. Thus, neither u nor v is a degree-1 vertex on the union of F and the contracted
edges. The result then follows by Lemma 9.

Lemma 12. There is no zero-cost edge in E′ \ F ′
0.

Proof. By the contractions performed in the second step of the algorithm, a zero-cost edge f ∈
E′ \ F ′

0 must belong to F0. But f remains in F ′
0 by the reverse-delete operation in computing F ′

0,
which prioritizes zero-cost edges. Thus, there is no zero-cost edge f ∈ E′ \ F ′

0.

Lemma 13. There is no zero-cost edge in E′ \ F .

Proof. The result follows by Lemma 12 and the fact that the third step of the algorithm never
excludes a zero-cost edge from F ′

0.

Lemma 14. There is no zero-cost edge in E(G1) \ F1.

Proof. By Lemma 13, there is no zero-cost edge in E′ \ F . The result follows from the fact that
the reduction described in Lemma 4 does not introduce a zero-cost edge in E(G1) \ F1.

Lemma 15. If S is a weak segment or a strong ℓ-segment on F1 with ℓ ≥ 3, then S does not have
a zero-cost edge.

Proof. Recall by Lemma 12 that there is no zero-cost edge in E′ \ F ′
0. Thus, the third step of the

algorithm does not include any zero-cost edge. Similarly, the reduction described in Lemma 4 does
not introduce a zero-cost edge in E(G1)\F1. These imply that it suffices to show the statement for
such an S on F ′

0. Assuming however that there is such a segment with a zero-cost edge contradicts
the second step of the algorithm, which contracts a special maximal set. In particular, we have the
following cases regarding the zero-cost segments of S:

� If S is a weak segment, then contracting all its zero-cost edges results in a minimal 2-VCSS.

� If S is a strong segment with at least two unit-cost edges, then contracting all its zero-cost
edges results in a minimal 2-VCSS.

� If S is a strong segment with one unit-cost edge, then contracting all its zero-cost edges except
one results in a minimal 2-VCSS.
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Lemma 16.
c(F1)

opt(G1)
≤ 3

2
.

Proof. We construct a feasible dual solution in (FAP-D) with total value at least 2
3c(F1). Given an

internal vertex u of a strong 2-segment on F1, we assign y{u} = 1. Recall that at most one of the
edges of a 2-segment can be of zero-cost. In order to maintain feasibility, if such a segment has a
zero-cost edge e, we set ze = 1. For any internal vertex v of a weak segment or a strong ℓ-segment
on F1 with ℓ ≥ 3, we assign y{v} = 1/2. Recall that by Lemma 15, such a segment does not have a
zero-cost edge. These assignments form a feasible solution in (FAP-D) by Lemma 14, Lemma 15,
and the first claim of Lemma 4. We will mostly be tacitly assuming these facts in the rest of the
proof while enlarging the dual assignment.

We distinguish a dual value we assign and its contribution in the objective function of (FAp-
D), which is twice the dual value. The latter is called the dual contribution. We use a cost
sharing argument, so that the cost of a specific set of edges is countered with a unique set of dual
contributions with ratio at least 2

3 , which establishes the main result. In doing so, we will also make
sure that we count all the z dual values of edges exactly once. For a given specific set of edges, we
call the ratio of the dual value with the cost the cover ratio. If the cover ratio is 1, we say that the
set is optimally covered.

We first describe the argument for the strong segments. Given a strong segment S on F1 and
an internal vertex s of S:

� If S is a 2-segment and both of its edges are of unit-cost, the dual contribution 2 of y{s}
results in a cover ratio of 1. If one of the edges is of unit-cost, and the other edge e is a
zero-cost edge, then 2y{s} − ze = 1, again optimally covering the edges of the segment.

� If S is an ℓ-segment with ℓ ≥ 3, then S does not have a zero-cost edge by Lemma 15. Then the
dual contribution of the internal vertices of S is ℓ− 1, which results in a cover ratio ℓ−1

ℓ ≥ 2
3 .

Given a weak ℓ-segment, the dual contribution of its internal vertices is also ℓ− 1. We impose
that this contribution pays for the cost ℓ−1 of the weak segment, thus covering the cost ℓ−1 of the
segment optimally. There remains the cost 1 of each weak segment to be covered. Since the cover
ratio of the strong segments is at least 2

3 as shown above, it suffices to show that the remaining
cost 1 of each weak segment is covered with cover ratio at least 2

3 .
We argue by induction on the number of weak segments k. We first consider one of the base

cases k = 1. Let u be an end vertex of the weak segment. If u is not shared by any strong
short segment, define y{u} = 1/2, which optimally covers the weak segment (See Figure 4a for an
illustration). Otherwise, let v be the other end vertex of the weak segment. Then we have at least
one strong short segment incident to u and at least one strong short segment incident to v. We
now incorporate the strong short segments into the analysis. Recall that the cost of a strong short

(a) (b) (c)Figure 4
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(a) (b) (c)Figure 5

segment is at least 1. So, the cost together with that of the weak segment is ℓ+ 1, and total dual
contribution is at least ℓ. This yields a cover ratio of at least ℓ

ℓ+1 ≥ 2
3 , since ℓ ≥ 2.

We next consider the other base case k = 2 in which the two weak segments do not share a
common end vertex. Let u be an end vertex of a weak segment. If u is not shared by any strong
2-segment, we assign y{u} = 1/2. Figure 5a shows this configuration with all the end vertices
applied this assignment. Otherwise, let S be a set satisfying the following:

1. u ∈ S,

2. S consists of vertices of strong 2-segments,

3. S induces a connected subgraph,

4. S is maximal.

We call S an augmented set on u. Assign yS = 1/2. Note that this is also feasible by the stated
properties of S and the first claim of Lemma 4. We call the dual variables y{u} and yS augmented
dual variables. It is clear that in the base case, there are at least 2 augmented dual variables,
thereby optimally covering the weak segments.

In the inductive step one may introduce one, two, three, or four new weak segments by extending
the graph in the induction hypothesis. All the cases are given in Figure 5, Figure 6, and Figure 7,
where we depict the extending subgraphs in their simplest form. In Figure 5b and Figure 5c one
new weak segment is introduced. Let u be a newly introduced high-degree vertex. If there is no
strong 2-segment with an end vertex u, we define y{u} = 1/2. Otherwise, we define yS = 1/2 for
an augmented set S on u. In either case, the new weak segment is optimally covered.

In Figure 6a two new weak segments are introduced. Let u and v be two newly introduced
high-degree vertices, which are also end vertices of weak segments. If neither u nor v is an end
vertex of a strong 2-segment, we define y{u} = y{v} = 1/2, which optimally covers the new weak
segments. Next, assume without loss of generality that both of them are the end vertices of the
same strong 2-segment. Then assign yS = 1/2 for an augmented set S on u. In this case we
incorporate the 2-segment into the analysis. Recall that at most one edge of a strong 2-segment
can be of zero-cost. The total cost of the 2-segment and the new weak segments is then at least
ℓ+ 2, where ℓ ≥ 1, and the total dual contribution including yS and the dual value defined for the
2-segment is ℓ+ 1. This leads to a cover ratio of ℓ+1

ℓ+2 ≥ 2
3 . We do not depict the generalization of

Figure 6a, analogous to the one from Figure 5b to Figure 5c, which does not change the analysis.
In Figure 6b two new weak segments are introduced together with at least two strong segments.

The analysis is identical to that of Figure 6a, resulting in a cover ratio of at least 2
3 . In Figure 6c,

Figure 7a, and Figure 7b three new weak segments are introduced. In all these cases the analysis
essentially reduces to that of the previous case, since there is a high-degree vertex we can assign the
dual value 1/2 on, which optimally covers the extra new segment, and hence only betters the cover
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(a) (b) (c)Figure 6

(a) (b) (c)Figure 7

ratio of the previous case. Figure 7c is also a straightforward generalization of Figure 7a, where
there are four new weak segments. We do not depict the generalizations of Figure 7c, analogous
to the one from Figure 7a to Figure 7b, which does not change the analysis. This completes the
induction and the proof.

By Lemma 16 and the third claim of Lemma 4, we have c(F )
opt(G′) ≤ 3

2 . Let F ′ be the solution

implied by Lemma 11, so that c(F ′)
opt(G′) ≤ 3

2 . Combining this with Lemma 3, we have c(F ′)
opt(G) ≤ 3

2 .
Together with Proposition 2, this completes the proof of Theorem 1.

5 A Tight Example

A tight example for the algorithm is given in Figure 8. The bold lines represent the edges of cost
1, and the other lines represent zero-cost edges. The solution returned by the algorithm has cost
3k − 2, where k is an even integer. Note that there is no improvement that can be performed on
the depicted solution. The optimal solution has cost 2k.
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